Rhythm® PHARMACEUTICALS

mmmm

Update on MC4R Pathway Programs An R&D event for investors and analysts Dec. 6, 2023

Forward Looking Statements

This presentation contains certain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, and that involve risks and uncertainties, including without limitation statements regarding the potential, safety, efficacy, and regulatory and clinical progress of setmelanotide, including the anticipated timing for initiation of clinical trials and release of clinical trial data and our expectations surrounding potential regulatory submissions, approvals and timing thereof, including for our Phase 2 DAYBREAK trial, the anticipated development plan for RM-718 and regulatory submissions for our pediatrics program; our business strategy and plans, including regarding commercialization of setmelanotide, the application of genetic testing and related growth potential, and expectations surrounding the potential market opportunity for our product candidates. Statements using words such as "expect", "anticipate", "believe", "may" and similar terms are also forward-looking statements. Such statements are subject to numerous risks and uncertainties, including but not limited to, our ability to enroll patients in clinical trials, the outcome of clinical trials, the impact of competition, the ability to achieve or obtain necessary regulatory approvals, risks associated with data analysis and reporting, our liquidity and expenses, the impact of the COVID-19 pandemic on our business and operations, including our preclinical studies, clinical trials and commercialization prospects, and general economic conditions, and other risks as may be detailed from time to time in our Annual Reports on Form 10-K and Quarterly Reports on Form 10-Q and other reports we file with the Securities and Exchange Commission. Except as required by law, we undertake no obligations to make any revisions to the forward-looking statements contained in this presentation or to update them to reflect events or circumstances occurring after the date of this presentation, whether as a result of new information, future developments or otherwise.

Today's Speakers

Rhythm Update on MC4R Pathway Programs

Welcome and what you'll hear today: David Meeker, MD Hypothalamic Obesity: Jennifer Miller, MD, and Amy Wood Rhythm Update on MC4R Programs: David Meeker, MD

- Exploratory Phase 2 DAYBREAK Trial Update
- Dorit Koren, MD, MTR
- Patrick Sleiman, PhD

Introduction to RM-718

• Danica Grujic, PhD

Topline Data from Phase 3 Pediatrics Trial

Q&A and Conclusion

Welcome and What You'll Hear Today David Meeker

Rhythm is Focused on Expanding the MC4R Pathway Opportunity

Continued High-level Execution on a Global Level

Strong BBS commercial execution

- Strong growth with \$22.5M in global net revenue for 3Q2023
- IMCIVREE now commercially available in Canada, Gulf Cooperation Council countries; German BBS launch underway

Hypothalamic obesity programs progressing

- Ph3 trial enrollment on track for completion by the end of 2023
- 12-month LTE data demonstrates sustained and deepening reductions in BMI

Multiple development programs advancing

- Stage 2 of Phase 2 DAYBREAK trial ongoing
- Phase 3 EMANATE trial ongoing
- RM-718: First in-human study initiation expected 1H 2024

RYTM is Uniquely Focused on Rare MC4R Pathway Diseases

AgRP, agouti-related peptide; LEPR, leptin receptor; MC4R, melanocortin-4 receptor; MSH, melanocyte-stimulating hormone; PCSK1, proprotein convertase subtilisin/kexin type 1; POMC, proopiomelanocortin.

Clinical Development Programs Designed to Expand IMCIVREE Label and Overall MC4R Pathway Opportunity

*Estimated prevalence of U.S. patients based on company estimates; does not include ex-U.S. prevalence estimates.

What You'll Hear Today

Update on Hypothalamic Obesity

Dr. Jenn Miller on treating patients with hypothalamic obesity

Patient and family perspective from Amy Wood, founder of RA Wood Foundation

On track to complete enrollment in Phase 3 trial by end of 2023

Exploratory Phase 2 DAYBREAK Trial

Rationale for gene selection

Preliminary BMI data from the open label part 1 of study on 6 gene cohorts

U.S. prevalence estimates

Official Introduction of RM-718

A more selective MC4R agonist, designed to not cause hyperpigmentation

Weekly administration

Phase 1 studies to begin in 1H2023

Phase 3 Pediatrics Trial

Evaluating setmelanotide in patients with BBS or POMC/LEPR deficiency obesity between the ages of 2 and younger than 6

EU regulatory path forward

U.S. regulatory path forward

Hypothalamic Obesity

Setmelanotide and Hypothalamic Obesity: A Transformative Opportunity for Rhythm

5,000 - 10,000*

patients Estimated U.S. prevalence

~500*

additional cases diagnosed in U.S. each year

- Unmet medical need is high; no approved therapies
- MC4R pathway deficiency following injury to hypothalamic region
- Large majority of patients are identified; no genetic testing required
- Patients are engaged with the system receiving specialist care for pituitary complications

*To estimate the number of patients with incident and prevalent craniopharyngioma and astrocytoma with obesity, Rhythm analyzed the literature and used the number of new cases of each per year in the United States, overall survival rates after a diagnosis of each brain tumor type and obesity rates among those patients at diagnosis or post-diagnosis. See appendix for details.

Setmelanotide Achieved Progressive, Deepening BMI Reduction at 16 Weeks, 6 and 12 Months in Patients with Hypothalamic Obesity

Error bars are the standard deviation. *Includes all patients who received 16 weeks of setmelanotide in the index trial and \geq 12 months of treatment in the long-term extension. +One patient did not complete a Month-6 visit. ‡One sample *t*-test with 2-tailed *P*-values. §Paired *t*-test with 2-tailed *P*-values. BMI, body mass index; %BMI95, percent of the 95th percentile for BMI.

Setmelanotide Achieved Sustained and Deepened BMI Reduction in Patients with Hypothalamic Obesity at One Year

Adapted from data presented during The Obesity Society Annual Meeting (TOS 2023) on October 17, 2023, in Dallas.

<u>Phase 3 Hypothalamic Obesity Trial</u>: Enrollment Completion on Track for end of 2023

Starting dose for all patients is 0.5mg QD; Maximum dose for patients<6yo is between 1.5mg QD and 3.0mg QD based on body weight; maximum dose for patients >6yo with a body weight of 30 kgs or more is 3.0mg QD.

Primary endpoint: Mean % change in BMI from baseline to after approximately 52 weeks on a therapeutic regimen of setmelanotide compared with placebo.

BMI, body mass index; QD, once daily.

Jenn Miller

Hypothalamic Obesity and Relation to the MC4R Pathway

Craniopharyngioma and **other suprasellar brain tumors** and treatment – tumor resection surgery and radiation – is most common cause

MC4R pathway deficiency following injury to hypothalamic region causes reduced energy, hyperphagia and rapid-onset, severe obesity

No approved treatments available

AgRP, agouti-related peptide; HO, hypothalamic obesity; MC4R, melanocortin-4 receptor; POMC, proopiomelanocortin; PYY, peptide YY.

Damage to the MC4R Pathway Can Lead to Hypothalamic Obesity

Damage to the hypothalamic region might impair downstream MC4R pathway signaling in the brainstem and spinal cord, leading to hyperphagia, severe obesity, and increased risk for comorbidities (eg, diabetes)¹⁻¹⁰

AgRP, agouti-related peptide; LEPR, leptin receptor; MC4R, melanocortin-4 receptor; MSH, melanocyte-stimulating hormone; PCSK1, proprotein convertase subtilisin/kexin type 1; POMC, proopiomelanocortin. **1.** da Fonseca et al. *J Diabetes Complications*. 2017;31:1549-1561. **2.** Yazdi et al. *PeerJ*. 2015;3:e856. **3.** Farooqi and O'Rahilly. *Nat Clin Pract Endocrinol Metab*. 2008;4:569-577. **4.** Abuzzahab et al. *Horm Res Paediatr*. 2019;91:128-136. **5.** Erfurth. *Neuroendocrinology*. 2020;110:767-779. **6.** Roth. *Front Endocrinol (Lausanne)*. 2011;2:49. **7.** Baldini et al. *J Endocrinol*. 2019;241:R1-R33. **8.** Rose et al. *Obesity (Silver Spring)*. 2018;26:1727-1732. **9.** Seo et al. *Hum Mol Genet*. 2009;18:1323-1331. **10.** Sohn et al. *Cell*. 2013;52:612-619. **11.** Rossi et al. *Cell Metab*. 2011;13:195-204.

Example of Hypothalamic Injury Resulting in Hypothalamic Obesity: Craniopharyngioma

Imaging of patient with craniopharyngioma diagnosed at 4 years of age

Patient case of M. Jennifer Abuzzahab, MD, Pediatric Endocrinologist, at Children's Minnesota.

Acquired Hypothalamic Obesity Leads to Rapid Weight Gain

Most frequently occurring following surgical resection or radiation of brain tumors¹

Most hypothalamic obesity cases follow craniopharyngioma^{1,2}

- Histologically benign neoplasms located centrally within the brain2
- Frequently impact hypothalamus, pituitary gland, and optic nerve²
- Treatment of the tumor includes complete or incomplete resection, radiotherapy, and hormone replacement therapy to treat hypopituitarism2

~50% of patients who receive treatment for craniopharyngioma develop hypothalamic obesity³

AgRP, agouti-related peptide; MC4R, melanocortin-4 receptor; POMC, proopiomelanocortin; PYY, peptide YY.

1. Rose et al. *Obesity (Silver Spring).* 2018;26:1727-1732. 2. Bereket. *Horm Res Paediatr.* 2020;93:497-509. 3. Abuzzahab et al. *Horm Res Paediatr.* 2019;91:128-136.

Multiple Conditions Can Lead to Hypothalamic Obesity

HO, hypothalamic obesity; TBI, traumatic brain injury. **1.** Rose et al. *Obesity (Silver Spring)*. 2018;26:1727-1732. **2.** Bereket. *Horm Res Paediatr*. 2020;93:497-509. **3.** Abuzzahab et al. *Horm Res Paediatr*. 2019;91:128-136.

Growth Patterns in Hypothalamic Obesity

Rhythm®

Pharmacologic Treatment Options

Pharmacologic Treatments

- There is a lack of clear treatment algorithms for HO, and there are no therapies specifically indicated for HO¹
- Many pharmacologic treatments indicated for general weight loss have been explored in patients with HO¹⁻³
- A range of case studies, observational studies, as well as a limited number of randomized control trials have assessed the impact of pharmacotherapies on HO¹⁻³
- 59% of patients reported using pharmacotherapy (and ~26% reported multidrug therapy)⁴

In part because of the unique pathophysiology of HO compared with general forms of obesity, conventional pharmacologic approaches have shown limited to no benefit in patients with HO, and there are currently no FDA-approved treatments available for these patients^{1,4,5}

Commonly Used Pharmacologic Treatments⁴

 Recent studies have also examined GLP-1 analogues for the treatment of HO with varying outcomes⁶⁻⁹

FDA, US Food and Drug Administration; GLP-1, glucagon-like peptide-1; HO, hypothalamic obesity.

Singhal et al. Curr Opin Endocrinol Diabetes Obes. 2021;28:55-63.
Müller et al. Endocrinol Metab Clin North Am. 2020;49:533-552.
Roth et al. Diabetes Obes Metab. 2021;23:363–373.
Rose et al. Obesity (Silver Spring).
2018;26:1727-1732.
Dimitri. Front Endocrinol (Lausanne). 2022;13:846880.
van Schaik et al. Obes Facts. 2020;13:361-370.
Zoicas et al. Eur J Endocrinol. 2013;168:699-706.
Roth et al. Diabetes Obes Metab. 2021;23:363-373.
Shoemaker et al. Int J Obes (Lond). 2022;46:623-629.

Amy Wood

Hypothalamic Obesity: The Patient Perspective

Amy Wood Caregiver, Executive Director

Alex's Journey

Alex was healthy 4 year-old until May 21, 2015, when he woke up with his left eye drifting inward. He arrived at Johns Hopkins ED and underwent an MRI where it was determined that he has a mass in the middle of his brain.

Early the next morning, he underwent emergency brain surgery.

Day After Surgery

One Week After Surgery

Two Weeks After Surgery

Alex's Diagnosis: Craniopharyngioma (CP)

- Approximately 620 new cases per year in the U.S.
- Treatment: full resection via right frontal lobe craniotomy
- Spent 4 weeks in Hopkins PICU and 3 weeks inpatient rehab at the Kennedy Krieger Institute
- Had multiple ER visits, medflights and admittances for seizures and hypothermia in the year following treatment.

Almost 80 years ago, the father of modern neurosurgery, Dr. Harvey Cushing, declared craniopharyngioma **"the most formidable of intracranial tumors."**

Benign is Not Fine

Alex developed the following medical conditions:

- Panhypopituitarism
- Adipsic Diabetes Insipidus / Hypo & Hypernatremia
- Adrenal Insufficiency
- Growth Hormone Deficiency

He began to gain weight immediately after surgery. **He went into the hospital at 40 lbs and left the hospital 6 weeks later at 60 lbs.** His weight continued to climb at a rapid pace and he was later diagnosed with hypothalamic obesity (HO).

Alex was gaining at about 1-2lbs a week during the first year post surgery.

Health Issues with HO

Fears he may develop obesity-related issues on top of his long list of medical conditions like sleep apnea, hypertension, diabetes and fatty liver disease.

Developed aspiration pneumonia from eating too fast.

Concern for risk for choking.

He has a tree nut allergy so constant supervision outside of the home is required.

Food seeking during the night causes sleep disruption for the entire family. Wakes very early so he doesn't miss breakfast.

Constant stress and anxiety on the family and social isolation. Constantly asking about food, every minute of the day.

Orthopedic issues, low energy and exercise intolerance.

HO sufferer.

What if there was a treatment for HO?

Caregiver Burden Study

- The top caregiver-reported problems experienced by survivors were weight problems: 87.8%
- Hyperphagia affected 53.6% of survivors
- 80% of caregivers are at-risk of depression

What if there was a treatment for HO?

Would Alex be able to **think about other things besides food**?

Would he be able to make friends now that food is less of an issue?

Could eating meals be an enjoyable family experience? Would Alex be able to have some **independence in the future**? Maybe even a job?

HO is Unrelenting

As the days passed, **our once very thin child continued to gain weight extremely quickly,** despite our vigilant attempts at watching his diet. Hyperphagia is unforgiving and takes Silas over. It is relentless. **He would put himself or others in harm's way in order to get food.**

I wish hypothalamic obesity was only about weight gain. It is not. **HO is about fear, isolation, and hopelessness.** My family has been living in this endless cycle for the past 18 years. When I developed HO after damage done to my brain due to a brain tumor, I doubled in size in the span of a few years. I went from 350 to almost 800 pounds.
Tal WELCOME **Feeling Hopeful for the Future**

THANK YOU

rawoodfoundation.org

@rawoodfound

 $\overline{0}$

@rawoodfoundation

@rawoodfound

linkedin.com/in/amymwood

Q and A

David Meeker

Overall MC4R Pathway Opportunity

Ongoing Phase 3 EMANATE Offers Significant Expansion of Setmelanotide's Potential Addressable Market

Obesity and Hunger Clinical Trial

Phase 3 EMANATE Trial Four independent sub-studies					
6,000 ⁺	Heterozygous POMC/PCSK1 deficiency				
4,000⁺ Heterozygous LEPR deficiency					
20,000*	SRC1 deficiency				
23,000*	SH2B1 deficiency				

† Estimated U.S. patients based on population with early-onset, severe obesity who may benefit from setmelanotide based on sequencing results, current estimated responder rates and that 1.7% of the US population (328M; 2019 US census) presents with severe early onset obesity (Hales et al 2018+); ~95% of individuals with severe early onset obesity remain obese into adulthood (Ward et al 2017); £ U.S. and EU regulatory submissions for BBS and Alström syndrome filed in September and October 2021, respectively. € Planned EMANATE trial would include patients with variants classified as pathogenic, likely pathogenic;

Phase 2 Daybreak Trial Designed to Evaluate Setmelanotide Across Genes with Strong Relevance to MC4R Pathway

Obesity and Hunger Clinical Trial

Relevance to MC4R Pathway: Rhythm's ClinGen-based framework suggests genes have very strong relevance to MC4R Pathway

Efficient, two-stage trial design

- **16-week, open-label run-in** in allows for fast signal-seeking in individual gene cohorts
- 24-week, double-blind treatment period enables robust proof of concept

Today: Stage 1 data **2H 2024:** Stage 2, PBO-controlled data

Exploratory Phase 2 DAYBREAK Trial Dorit Koren, MD, MTR Patrick Sleiman, PhD

Exploratory Phase 2 DAYBREAK Trial Stage 1 Topline Data Dorit Koren, MD, MTR

MC4R Pathway Biology is Clear and Strong: Regulates Hunger, Caloric Intake, Energy Expenditure and, Consequently, Body Weight¹⁻⁴

AgRP, agouti-related peptide; LEPR, leptin receptor; MC4R, melanocortin-4 receptor; MSH, melanocyte-stimulating hormone; PCSK1, proprotein convertase subtilisin/kexin type 1; POMC, proopiomelanocortin. **1**. Abuzzahab et al. *Horm Res Paediatr.* 2019;91:128-136. **2.** Erfurth. *Neuroendocrinology.* 2020;110:767-779. **3.** Rose et al. *Obesity (Silver Spring).* 2018;26:1727-1732. **4.** Roth. *Front Endocrinol (Lausanne).* 2011;2:49.

First MC4R Pathway Genes Related to Obesity

Validated Gene Selection Methodology^{1,2} Led to Initial Selection of ~30 Genes for Exploratory Phase 2 DAYBREAK Study

MC4R, melanocortin-4 receptor.

1. Strande et al. Am J Hum Genet. 2017;100:895-906. 2. Vogel et al. Poster presented at: American College of Medical Genetics and Genomics (ACMG)Annual Clinical Genetics Meeting; March 22-26, 2022.

Phase 2 DAYBREAK Trial Designed to Evaluate Setmelanotide Across Genes with Strong Relevance to MC4R Pathway

Daybreak

Obesity and Hunger Clinical Trial

DAYBREAK 2-Stage Design: 16-Week Run-in Followed by 24-week Randomized Withdrawal and Double-blind, Placebo-controlled

Eligibility criteria:

- Genetic confirmation in patients 6-65 years
- Obesity: BMI ≥40 kg/m2 (adults ≥18 years) or BMI ≥97th percentile for age and sex (children <18 years)

Primary Endpoint: proportion of patients by genotype who achieve a BMI reduction of \geq 5% from baseline in response to setmelanotide at the end of Stage 1

^aVirtual visit. R, randomization.

50

Baseline Demographics

Parameter	Total N=164		
Mean age at baseline (± standard deviation SD)	30.2 (±16.9)		
Male n (%)	54 (32.9%)		
Female n (%)	110 (67.1%)		
Mean BMI at Baseline (kg/m²) (± SD) (adults age ≥18 years)	48.5 (±8.1) (Range 40-74.4) n=109		
Mean BMI-Z score at Baseline (±SD) (age <18 years)	2.6 (±0.4) n=55		

DAYBREAK Patient Dispositions

*165 patients consented and enrolled and one discontinued before 1 dose;

** Includes 12 discontinued patients who withdrew prior to week 16 but had their end-of-study visit within 2 weeks of 16; their data is included in completer analyses.

Potential Efficacy Observed Across Multiple Gene or Gene Group Cohorts in Full Analysis Set

Strongest Potential Efficacy in Most Patients Observed in PHIP and SEMA3

SEMA3	PLXNA	PHIP	TBX3	MAGEL2	SIM1
30% (12 of 40)	35.6% (16 of 45)	56.3% (9 of 16)	40% (2 of 5)	30% (3 of 10)	25% (5 of 20)

patients responded with **> 5% reduction in BMI** at 16 weeks

BMI % Change by Gene Cohort (Completers): PHIP Strongest, High Variability at 16 Weeks

54

change per gene/cohort

Number, average

Completers with Variants in *SIM1* Gene Showed Low Responder Rate, Strong Response in a Few Individuals

SIM1 Individual Percent Change from Baseline

SIM1 25% (5 of 20) patients responded with ≥ 5% reduction in BMI

Individual Completers with Variants in *MAGEL2* Gene Showed Strong Response in Few Responders at 16 Weeks

MAGEL2 Individual Percent Change from Baseline

Small Number of Individual Completers with Variants of *TBX3* Gene Show BMI Reduction at 16 Weeks

2 3 4 5 0 -10 -12 -13 -14 -15

TBX3 Individual Percent Change from Baseline

Completers in *PLXN* Genes Cohort Showed Strong Response with Variability

Completers in *PLXN* Cohort Percent Change from Baseline

PLXNs 30% (12 of 40*) patients responded with > 5% reduction in BMI

44.4% (12 of 27)

completers responded with **> 5% reduction in BMI**

* Full analysis set.

Majority of Completers with Variants in SEMA3 Genes Showed Strong Response

SEMA3s 35.6% (16 of 45*) patients responded with > 5% reduction in BMI

61.5% (16 of 26)

completers responded with **> 5% reduction in BMI**

Rhythm[®]

* Full analysis set.

Nearly 70% of Completers with Variants in PHIP Gene Respond

PHIP 56.3% (9 of 16*) patients responded with ≥ 5% reduction in BMI 69.2% (9 of 13)

completers responded with <u>> 5% reduction in BMI</u>

* Full analysis set.

The Genetics behind the Exploratory Phase 2 DAYBREAK Trial Patrick Sleiman, PhD

Summary of Genes in DAYBREAK Trial¹⁻²⁸

Abbreviations are in slide notes.

1. Nyamugenda et al. *iscience*. 2020;23:101114. **2.** Yazdi et al. *PeerJ*. 2015;3:e856. **3.** Srisai et al. *Not* Commun. 2017;8:713. **4.** Chan et al. *Proc Natl Acad Sci U S A*. 2009;106:6146-6151. **5.** Yazdi et al. *PeerJ*. 2015;3:e856. **6.** Pearce et al. *Cell*. 2013;155:765-777. **7.** Guo et al. *Mol Metab*. 2016;6:194-205. **8.** Revelli et al. *Obesity (Silver Spring)*. 2011;19:1010-1018. **9.** Lam et al. *Endocrinology*. 2008;149:1323-1328. **10.** Cawley et al. *Endocr Rev*. 2012;33:216-253. **11.** Moreno et al. *PLoS One*. 2016;11:e0166381. **12.** Harris et al. *J Clin Invest*. 2001;107:111-120. **13.** MacKay et al. *Nat Commun*. 2019;10:5364. **14.** Kohno et al. *J Neurosci*. 2014;34:15288-15296. **15.** Lee et al. *Development*. 2016;143:3763-3773. **16.** Nasif et al. *Proc Natl Acad Sci U S A*. 2015;112:E1861-E1870. **17.** Mercer et al. *PLoS Genet*. 2013;9:e1003207. **18.** Pravdivyi et al. *Hum Mol Genet*. 2009;18:1140-1147. **21.** Wang et al. *Diabetologia*. 2014;57:236-245. **22.** van der Klaauw et al. *Cell*. 2019;176:729-742.e18. **23.** Marenne et al. *Cell Metab*. 2020;31:1107-119.e12. **24.** Proenca da Fonseca et al. *J Diabetes Complications*. 2017;31:1549-1561. **25.** Beck et al. *J Biol Chem*. 2013;288:19471-19483. **26.** Gao et al. *Cell Rep*. 2017;18:583-592. **27.** Quarta et al. *Nat Metab*. 2019;1222-235. **28.** Stratigopoulos et al. *Cell Metab*. 2014;19:767-779.

ACMG Variant Classification Can Inform MC4R Pathway Deficit and Potentially Setmelanotide Response

*ACMG Guidelines Richards et al, 2015

~80% of VUS Re-classifications are to Likely Benign or Benign

Sources of evidence that enable VUS resolution include:

- New data resources (e.g. frequency data gnomAD)
- New tools (prediction algorithms e.g. SpliceAl)
- Testing family members
- Functional data (*in vitro* assays, MAVEs)

Kobayashi et al., ASHG 2023 Tsai et al., Genet Med. 2019 Jun;21(6):1435-1442. Harrison et al., <u>Genome Medicine</u> **volume 11**, Article number: 72 (2019)

Functional Characterization of Missense Variants in the POMC, PCSK1, LEPR Genes has Resulted in the Reclassification of 90 VUS Variants

Original Research

Functional characterization of all missense variants in *LEPR*, *PCSK1*, and *POMC* genes arising from single-nucleotide variants

Bhavik P. Shah, Patrick M. Sleiman, Jessica Mc Donald, Ida H. Moeller & Patrick Kleyn Received 23 Dec 2022, Accepted 09 Feb 2023, Accepted author version posted online: 16 Feb 2023

66 Download citation Attps://doi.org/10.1080/17446651.2023.2179985

Functional characterization

- Assess impact of variants directly on protein function
- Evaluate contribution of variant to disease and potentially Setmelanotide response
- High throughput
- Assist clinical genetic laboratories in reclassifying VUS variants

SEMA3G: Five *SEMA3G* Variants Reclassified from VUS or LP to B/LB During Trial by Prevention Genetics According to ACMG Criteria

Gene	Variant	Responder	Starting ACMG clasification	Recalssification		
SEMA3G	p.Ser25Arg	-9.8	VUS	VUS		
SEMA3G	p.Arg392Trp	-9.6	VUS	VUS		
SEMA3G	p.Asn127Lys	-8.4	VUS	Likely Benign	<	
SEMA3G	p.Arg82Trp	-7.6	VUS	VUS		
SEMA3G	p.lle674Thr	-6.3	VUS	VUS		
SEMA3G	p.Thr782Lys	-6.2	VUS	VUS		
SEMA3G	p.Arg167Trp	-5.3	VUS	VUS		
SEMA3G	p.Thr782Lys	-5.3	VUS	VUS		
SEMA3G	p.Arg91Trp	-4.4	Likely Pathogenic	Likely Benign	←	_
SEMA3G	p.Arg167Trp	-3.4	VUS	VUS		4/6 nonresponders
SEMA3G	p.Arg169Trp	-3.3	Likely Pathogenic	Likely Benign	←───	reclassified to Likely
SEMA3G	p.Asp64Asn	-1.9	VUS	VUS		
SEMA3G	p.Arg91Trp	-1.3	Likely Pathogenic	Likely Benign	←───	Benign
SEMA3G	p.Leu15Phe	1.7	VUS	Likely Benign	←───	
			Ļ	•	-	
			8/14	7/9		
			responders	responders		
			(57%)	(77.8%)		

Ad hoc analysis of patients with week 16 data at V7: N=112

SIM1 Variants Are Associated With Obesity¹⁻³

Ramachandrappa et al.^b, Sullivan et al.^c, Zegers et al.^d

1. Ackinci et al. J Clin Res Pediatr Endocrinol. 2019;11:341-349. 2. Swarbrick et al. Obesity (Silver Spring). 2011;19:2394-2403. 3. Montagne et al. Obesity. 2014;22:2621-2624. 4. Shah et al. Proc Natl Acad Sci U S A. 2014;111:13193-13198. 5. Michaud et al. Genes Dev. 1998;12:3264-3275. 6. Michaud et al. Hum Mol Genet. 2001;10:1465-1473. 7. Li et al. Neuron. 2019;102:653-667.e6. 8. Nyamugenda et al. iScience. 2020;23:101114. 9. Yazdi et al. PeerJ. 2015;3:e856.

Functional Characterization of 213 SIM1 Missense Variants

Loss of Function SIM1 Variants Enriched in Responder Group

Gene	% BMI Δ BL	Variant	ACMG	Published Functional assays ^{1,2}	Rhythm Functional assay
SIM1	-15.1	p.Asp707His	VUS	¹ Moderately Damaging	Moderate LOF
SIM1	-14.5	p.Thr712lle	VUS	¹ Severely Damaging	Moderate LOF
SIM1	-10.4	p.Ser71Arg	VUS	¹ Severely Damaging	Moderate LOF
SIM1	-5.8	p.Glu14Asp	VUS	NA	NA
SIM1	-5.1	p.Leu238Arg	VUS-SP	¹ Severely Damaging	NA
SIM1	-3.7	p.Thr712lle	VUS	¹ Severely Damaging	Moderate LOF
SIM1	-3.6	GT donor	VUS-SP	NA	NA
SIM1	-3.3	p.Asp707His	VUS	¹ Moderately Damaging	Moderate LOF
SIM1	-2.9	p.Pro352Ser	VUS	NA	WT
SIM1	-2.8	p.Leu479Pro	VUS	NA	NA
SIM1	-1.5	p.Arg550His	VUS	¹ Severely Damaging	Moderate LOF
SIM1	-1.2	p.Gln152Glu	VUS	² Mild effect	WT
SIM1	0.4	p.Ser680Leu	VUS	¹ Uncertain	WT
SIM1	0.6	p.lle564Thr	VUS	NA	WT
SIM1	1.1	p.Asp707His	VUS	¹ Moderately Damaging	Moderate LOF
SIM1	3.6	p.Gly302Ser	VUS	NA	WT

Responders: 4/5 variants assayed All (100%) display Loss of Function

Non-responders: 9/11 variants assayed 5/9 (56%) show Wild-Type activity

Excluding WT variants SIM1 response rate increases from 31% (5/16) to 45% (5/11)

p.Asp707His: Moderately damaging variant of variable penetrance¹

Ramachandrappa,.. Farooqi Rare variants in single-minded 1 (SIM1) are associated with severe obesity J Clin Invest . 2013 Jul;123(7):3042-50. PMID: 23778139
 Bonnefond,.. Froguel Loss-of-function mutations in SIM1 contribute to obesity and Prader-Willi–like features J Clin Invest. 2013 Jul 1; 123(7): 3037–3041.

Loss of Function SIM1 Variants Enriched in Responder Group

	Gene	% BMI Δ BL	Variant	ACMG	Published Functional	Rhythm Functional assay
	SIM1	-15.1	p.Asp707His	VUS	¹ Moderately Damaging	Moderate LOF
۲		-14.5	p.m./izie	vus	-Severely Damaging	IVIOUEI ALE LOF
	SIM1	-10.4	p.Ser71Arg	VUS	¹ Severely Damaging	Moderate LOF
	SIM1	-5.8	p.Glu14Asp	VUS	NA	NA
	SIM1	-5.1	p.Leu238Arg	VUS-SP	¹ Severely Damaging	NA
	SIM1	-3.7	p.Thr712lle	VUS	¹ Severely Damaging	Moderate LOF
Γ	JIVIL	-9.0	GT donor	v 03-5F	INA	INA
	SIM1	-3.3	p.Asp707His	VUS	¹ Moderately Damaging	Moderate LOF
	SIIVIT	-2.9	p.prosozoer	VUS	NA	VV I
	SIM1	-2.8	p.Leu479Pro	VUS	NA	NA
	SIM1	-1.5	p.Arg550His	VUS	¹ Severely Damaging	Moderate LOF
	SIM1	-1.2	p.Gln152Glu	VUS	² Mild effect	WT
	SIM1	0.4	p.Ser680Leu	VUS	¹ Uncertain	WT
		0.6	n llo564Thr	1/115	ΝΛ	λ/Τ
	SIM1	1.1	p.Asp707His	VUS	¹ Moderately Damaging	Moderate LOF
	CIN 41	2.6	n Chu202Cor	VILIC	NIA	NA/T

Responders: 4/5 variants assayed All (100%) display Loss of Function

Non-responders: 9/11 variants assayed 5/9 (56%) show Wild-Type activity

variant of variable penetrance¹

Excluding WT variants SIM1 response rate increases from 31% (5/16) to 45% (5/11) p.Asp707His: Moderately damaging

Ramachandrappa,.. Farooqi Rare variants in single-minded 1 (SIM1) are associated with severe obesity J Clin Invest . 2013 Jul;123(7):3042-50. PMID: 23778139
 Bonnefond,.. Froguel Loss-of-function mutations in SIM1 contribute to obesity and Prader-Willi–like features J Clin Invest. 2013 Jul 1; 123(7): 3037–3041.

Rhythm[®]

Variants in TBX3 Cause Ulnar-Mammary Syndrome and Obesity^{1,4}

AgRP, agouti-related peptide; LEPR, leptin receptor; MC4R, melanocortin-4 receptor; MSH, melanocyte-stimulating hormone; NPY, neuropeptide Y; PCSK1, proprotein convertase subtilisin/kexin type 1; POMC, proopiomelanocortin; TBX3, T-Box 3.

1. Galazzi et al. Endocr Connect. 2018;7:1432-1441. 2. Bamshad et al. Am J Hum Genet. 1999;64:1550-1562. 3. Sanz et al. J Neurosci. 2015;35:5549-5556. 4. Quarta et al. Nat Metab. 2019;1:222-235. 5. Yazdi et al. PeerJ. 2015;3:e856. 6. Coll et al., Structure Vol. 10, 343–356, 2002. 7. Shi et al., Science Advances 16 Nov 2022 Vol 8, Issue 46

% BMI Δ BL

-11.6

-5.8

-1.7

Discon

Discon

Gene	Response rate of Completers	PG ACMG reconfirmation	Estimated US prevalence*	Presentation
Overall	43.8% (n=112)	45.6% (48.5%) (n=101)	-	
SEMA3 family	61% (n=26)	72% (n=21)	~25,000	Monogenic ¹
PHIP	69.2% (n=13)	69.2% (n=13)	~4,000	Chung-Jansen Syndrome ²
ТВХЗ	66.7% (n=3)	66.7% (100%) (n=3 or (2))	~2,300	Ulnar-Mammary Syndrome ³
PLXN family	44% (n=27)	44% (n=27)	~34,000	Monogenic ¹

*U.S. prevalence estimates based on results from Rhythm's Uncovering Rare Obesity genetic program with samples from more than 36,000 participants, classification of variants for pathogenic, likely pathogenic and 20% of VUS and applied to established estimate of approximately 5 million people in the US with early-onset obesity; **1**. van der Klaauw et al. *Cell*. 2019;176:729-742.e18. **2**. Marenne et al. *Cell Metab*. 2020;31:1107-1119.e12. **3**. Bamshad et al. *Am J Hum Genet*. 1999;64:1550-1562 **4**. Patak et al. *Clin Genet*. 2019;96:493-505. **5**. McCarthy et al. *Am J Med Genet A*. 2018;176:2564-2574. **6**. Ackinci et al. *J Clin Res Pediatr Endocrinol*. 2019;11:341-349. **7**. Swarbrick et al. *Obesity*. 2011;19:2394-2403

Introduction to RM-718 Danica Grujic, PhD

RM-718: Next-generation, Potentially More Selective MC4R Agonist

Phase 1 SAD, MAD studies anticipated to begin in 1H 2024

MC4R-specific, designed to be potentially more potent

MC1R-sparing, designed to eliminate hyperpigmentation effect

Weekly formulation with composition of matter patent protection to 2041*

Rhythm®

*Includes patent term adjustment and patent term extension.

Rhythm Set out to Develop Next-Gen Compound with Same or Better Efficacy than Setmelanotide

RM-718: Synthetic, cyclic 7-amino acid peptide (heptamer)

Rhythm library of compounds built closely around setmelanotide template and chemical space

Ten next-gen candidates (all peptides) identified with MC4R potency in vitro, as compared to setmelanotide

RM-718 was chosen due to MCR4 selectivity observed in vitro

Designed to be MC1R sparing

Designed for sustained release for once-weekly injection

RM-718 Showed Comparable Activity to Setmelanotide on Body Weight and Food Intake Reduction in 14-day Study in DIO Rats

Study design: 3 arms (n=15): Control, Setmelanotide (RM-493) QD and RM-718 QD SC inj. 0.5mg/kg/day

Shown is mean (sem) for n=15/group, ***p<0.001, significant difference vs vehicle, τ <0.05, significant difference RM-718 vs RM-493 Daily formulation of both setmelanotide (RM-493) and RM-718 were used in the study; DIO=diet induced obesity

RM-718 Demonstrated Reduction in Body Weight and Body Weight Gain in Obese Zucker Rats (LepR deficient)

21-d parallel study of 4 arms (n=8), Placebo, Setmelanotide (RM-493) QW (5mg/kg) and RM-718 QW (5&10 mg/kg)

Body weight reduction

Body weight gain was significantly reduced

Rhythm[®]

RM-718 QW, Setmelanotide QW Normalized Food and Water Intake

Rhythm[®]

RM-718 10 mg/kg

Cardiovascular Safety Observed in Non-Human Primate Studies

3-day sc infusion of RM-718 (1&5 mg/kg) and LY 2112688 (0.5&1 mg/kg) to cynomolgus monkeys

Shown is a mean (se), Reference item=0.9% sodium chloride, Test Item 1=RM-718, Test Item 9= LY2112688; predose:2d, sc inf:3, follow up:4d

Plasma exposure after 72h infusion

Test Item	0.5 mg/kg/d (ng/mL)	1 mg/kg/d (ng/mL)	5 mg/kg/d (ng/mL)
LY2112688	205	298	-
RM-718	-	321	1578

Changes in Blood Pressure and Heart Rate with LY 2112688

Test Item	Dose Level	Mean Pressure ^a mmHg (%)		Systolic Pressure ^a mmHg (%)		Diastolic Pressure ^a mmHg (%)		Heart Rate ^a BPM (%)	
	mg/kg	Average ^a	Maximum	Average ^a	Maximum	Average ^a	Maximum	Average ^a	Maximum
LY2112688	0.5	-2.49	-5.58	-1.58	-6.61	-3.14	-6.83	2.32	23.93
		(-2.64%)	(-5.93%)	(-1.40%)	(-5.66%)	(-4.17%)	(-8.51%)	(1.83%)	(17.64%)
	1	4.59	8.85	5.53	10.07	3.06	6.10	3.14	19.06
		(4.95%)	(9.80%)	(4.99%)	(9.37%)	(4.12%)	(8.30%)	(2.65%)	(14.05%)

^a Average baseline-adjusted change, relative to control, from 1 to 20 hours post SOI for LY2112688 for blood pressure and heart rate.

Cardiovascular safety confirmed with RM-718QW with the dose up to 30 mg/kg providing >30x safety margin

First in Human, Three-part Phase 1 Study to Evaluate Safety, Tolerability, and PK of RM-718 QW Anticipated to Begin in 1H 2024

Part A: SAD RM-718 QW

Screening: 28 days 6 cohorts X 6 subjects <u>></u>18y n=36 Randomized 2:1 (RM-718: Placebo) Single doses ascending 3mg - 50mg* Safety follow up 10-14 days Part B: MAD RM-718 QW 4 doses

Screening: 28 days 6 cohorts X 6 subjects >18y n=36 Randomized 2:1 (RM-718: Placebo) Multiple doses ascending 3mg - 40mg* Safety follow up 28 days Part C: MAD Hypothalamic Obesity RM-718 QW 4 doses

Screening: 28 days 8 cohorts X 3 patients ≥12y n=24 Open-label, multiple doses ascending 10mg - 40mg* Safety follow up 28 days Transition to open-label extension

*Doses may be adjusted upward or downward based on emerging data; 2 additional cohorts may be permitted in Parts A and Part B based on emerging data. Part C dosing will be based on safety, tolerability, and available PK data from Parts A and B. Patients ≥18 years of age will complete Part C cohorts prior to initiating dosing in patients ≥12 to <17 years. Planned starting dose in Part C is 10mg. Part C doses will not exceed the highest Part A or Part B dose for which safety and tolerability data are supportive. Patients in Part C may be eligible to participate in an open-label extension study.

RM-718 has Demonstrated Similar or Improved Safety, Tolerability and Potential Efficacy Compared to Setmelanotide Weekly Formulation

Designed to be more selective MC4R agonist

In vivo safety results supportive of no off-target cardiovascular effects, like setmelanotide

No hyperpigmentation observed in vivo

In vivo results suggest potential efficacy for body weight reduction, hyperphagia reduction

Potential for efficient development path with hypothalamic obesity

David Meeker Positive Data from Phase 3 Pediatrics Trial

Rare Genetic Diseases Often Present Early In Life

Hyperphagia and obesity of rare MC4R diseases present in infancy >15%

of samples sequenced in URO genetic tests come from children 6yo or younger

Regulatory submissions:

- Type II variation submitted to seek
 EMA marketing authorization
- \circ $\,$ US FDA in 1H 2024 $\,$

URO Results Indicative of Unmet Need in Children Younger than 6yo

Data as of 10/31/2023; YTD Based on Submission Date

Baseline Demographics and Disposition

Parameter	Statistic	POMC or LEPR Deficiency	BBS	Total
Enrolled patients	n	7	5	12
Male	n (%)	5 (71.4%)	2 (40.0%)	7 (58.3%)
Female	n (%)	2 (28.6%)	3 (60.0%)	5 (41.7%)
BMI at Baseline (kg/m²)	Mean (SD)	34.347 (7.0673)	23.716 (3.5184)	29.918 (7.8559)
BMI-Z score at Baseline	Mean (SD)	10.749 (3.8400)	4.233 (1.0742)	8.034 (4.4408)

Setmelanotide Achieved Clinically Meaningful Reductions in BMI and BMI-Z in 2-<6yo Patients with POMC/LEPR Deficiency or BBS

Analysis set population (N=12)

Data on file at Rhythm. To be presented at a medical conference

Setmelanotide Achieved Consistent Reductions in BMI-Z Score

*Patient was not compliant with dosing (next slide); #Patient discontinued the study at Week 7 and was subsequently lost to follow-up For patients who did not achieve their greatest reduction from baseline n BMI-Z score at Week 52 (52-week population), the maximum reduction in Z-score at any time is presented.

Patient Who Did Not Achieve ≥0.2 BMI-Z Score Reduction at Week 52

Safety Profile in Patients 2-<6yo Consistent with Past Trials Evaluating Setmelanotide in Patients 6 years old and older

AE	POMC or LEPR Deficiency	BBS	Total
Skin hyperpigmentation	5 (71.4%)	4 (80.0%)	9 (75.0%)
Injection site bruising	1 (14.3%)	3 (60.0%)	4 (33.3%)
Injection site pruritus	1 (14.3%)	3 (60.0%)	4 (33.3%)
Vomiting	2 (28.6%)	1 (20.0%)	3 (25.0%)
Abdominal pain	1 (14.3%)	1 (20.0%)	2 (16.7%)

Safety analysis set is defined as all patients who received ≥1 dose of study drug. TEAE, treatment emergent adverse event.

Setmelanotide Demonstrated Safety, Tolerability and Consistent, Clinically Meaningful BMI, BMI-Z Reductions in Patients 2-<6yo

Clinically meaningful reductions in BMI and BMI-Z

Generally welltolerated and safe, as seen in older patients Doses of 0.5mg to 2.5mg proposed for patients <6yo

All 11 patients remain on therapy*

8 patients enrolled in bridging program 3 patients who are now 6yo or older

are on commercial therapy.

* As of Dec. 5, 2023

Q and A

