Efficacy and Safety of the MC4R Agonist Setmelanotide in POMC Deficiency Obesity: A Phase 3 Trial

Karine Clément, Jesús Argente, Allison Bahm, Hillori Connors, Kathleen De Waele, Sadaf Farooqi, Greg Gordon, James Swain, Guojun Yuan, Peter Kühnen

1Sorbonne Université, INSERM, Nutrition and Obesities Research Unit, Paris, France; 2Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, Paris, France; 3Department of Pediatrics & Pediatric Endocrinology Universidad Autónoma de Madrid University, Madrid, Spain; 4Peel Memorial Hospital, Toronto, Canada; 5Rhythm Pharmaceuticals, Inc., Boston, MA; 6Ghent University Hospital, Ghent, Belgium; 7Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; 8HonorHealth Bariatric Center, Scottsdale, AZ; 9Institute for Experimental Pediatric Endocrinology Charité Universitätsmedizin Berlin, Berlin, Germany
Melanocortin Signaling Is Crucial for Regulation of Body Weight\textsuperscript{1,2}

- Body weight is regulated by the hypothalamic central melanocortin pathway.
- In response to leptin signaling, POMC is produced in POMC neurons and is cleaved by protein convertase subtilisin/kexin type 1 into α-MSH and β-MSH.
- α-MSH and β-MSH bind to the MC4R, which decreases food intake and increases energy expenditure, thereby promoting a reduction in body weight.

Rare Genetic Variants in *POMC* and *PCSK1* Are Associated With Early-Onset Severe Obesity and Hyperphagia

- Obesity is a disease caused by environmental and genetic factors, including common or rare genetic variants that can impair gene expression or function\(^1\)\(^-\)\(^2\)
- Rare genetic variants in the central melanocortin MC4R pathway, including variants in *POMC* and *PCSK1*, are characterized by early-onset severe obesity and hyperphagia\(^3\)

---

**AgRP, agouti-related protein; LEPR, leptin receptor; MC4R, melanocortin 4 receptor; MSH, melanocyte-stimulating hormone; NPY, neuropeptide Y; PCSK1, proprotein convertase subtilisin/kexin type 1; POMC, proopiomelanocortin.**

Setmelanotide Is an MC4R Agonist That Targets the Impaired Central Melanocortin Pathway

Results from a phase 2 study showed that setmelanotide, an MC4R agonist, reduced weight in 2 patients with POMC deficiency obesity\(^1\)

This multicenter, placebo-controlled, phase 3 trial investigated the efficacy and safety of setmelanotide in individuals with POMC or PCSK1 deficiency obesity

---

MC4R, melanocortin 4 receptor; PCSK1, proprotein convertase subtilisin/kexin type 1; POMC, proopiomelanocortin.

Participants who lost ≥5 kg weight (or ≥5% if <100 kg) in the first open-label active treatment phase entered an 8-week, placebo-controlled phase, inclusive of a 4-week placebo withdrawal period.
Endpoints and Inclusion Criteria

Primary endpoint:
• Proportion of participants who achieved ≥10% weight loss

Key secondary endpoints:
• Mean percent change in body weight
• Mean percent change in “most hunger” score
• Proportion of participants who achieved ≥25% reduction in “most hunger” score

Post hoc analysis:
• BMI Z-scores for participants aged <19 years

Key inclusion criteria
• Biallelic for loss-of-function POMC or PCSK1 variants (homozygote or compound heterozygote)
• Adults (aged ≥18 years) with BMI of ≥30 kg/m²
• Children or adolescents (aged ≥6 years to <18 years) with weight of ≥97th percentile for age

BMI, body mass index.

a“Most hunger” score was determined on a 0 to 10 Likert scale from the question, “In the last 24 hours, how hungry did you feel when you were the most hungry?”
Ten Participants With POMC or PCSK1 Deficiency Obesity Were Enrolled

Baseline Characteristics

<table>
<thead>
<tr>
<th>Genotype, n (%)</th>
<th>POMC</th>
<th>9 (90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCSK1</td>
<td>1 (10)</td>
<td></td>
</tr>
</tbody>
</table>

Age, mean (range), years 18.4 (11-30)

Male, n (%) 5 (50)

Ethnicity, n (%)

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hispanic and Latino</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Not Hispanic and Latino</td>
<td>8 (80)</td>
</tr>
<tr>
<td>Unknown</td>
<td>1 (10)</td>
</tr>
</tbody>
</table>

Weight, mean (range), kg 118.7 (55.9-186.7)

BMI, mean (range), kg/m² 40.4 (26.6-53.3)

“Most hunger” score, mean (range)a 8.0 (7-9)

9 participants completed the trial; 1 participant discontinuedb

BMI, body mass index; PCSK1, proprotein convertase subtilisin/kexin type 1; POMC, proopiomelanocortin.

a“Most hunger” score was determined on a 0 to 10 Likert scale from the question, “In the last 24 hours, how hungry did you feel when you were the most hungry?”
bParticipant with POMC deficiency obesity withdrew during the first open-label treatment phase because they did not meet the weight loss threshold.
Body Weight and Hunger Reduction in Patients With POMC Deficiency Obesity Treated With Setmelanotide for ~1 Year

Baseline weight: 114.4 kg

Primary endpoint
Setmelanotide Was Associated With Significant Weight Reductions Over ~1 Year at Therapeutic Dose

8 of 10 participants (80% [90% CI, 49.31%–96.32%]; \(P<0.0001\)) achieved the primary endpoint threshold of ≥10% weight loss from baseline.

Mean percent change in body weight from baseline was -25.4% (90% CI, -28.80% to -21.98%); \(P<0.0001\); \(n=9^a\); mean weight loss was 31.9 kg.

The participant with PCSK1 deficiency obesity who did not meet the primary endpoint had confounding comorbidities and received treatment with risperidone for ~20 weeks, which made responses difficult to assess. The second participant who did not meet the primary endpoint was later determined to possibly not have had a loss-of-function variant in \(POMC\).

*Endpoint analyzed in the evaluable population, which included participants who achieved weight loss threshold (5 kg or 5% if <100 kg) after the first open-label active treatment phase.
Setmelanotide Was Associated With Significant Reductions in “Most Hunger” Score Over ~1 Year at Therapeutic Dose

<table>
<thead>
<tr>
<th>“Most Hunger” score parameter (n=7)a</th>
<th>Mean (SD)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>8.1 (0.78)</td>
<td>7.0 to 9.0</td>
</tr>
<tr>
<td>~1 year at therapeutic dose</td>
<td>5.8 (2.02)</td>
<td>3.0 to 8.0</td>
</tr>
<tr>
<td>Percent change at ~1 year at therapeutic dose, %</td>
<td>-27.1 (28.11)</td>
<td>-72.0 to -1.0</td>
</tr>
</tbody>
</table>

P value = 0.0005

4 of 8 participants (50%) had ≥25% reduction in “most hunger” score from baseline (P=0.0004)b
Setmelanotide Withdrawal Was Associated With Increases in Weight and Hunger Score During the 4-Week Placebo Withdrawal Period

Mean weight change

+5.5 kg

n=8
Range, 1.53–10.5 kg

Change in mean “most hunger”

+2.2

n=6
Range, 2.0–9.86
Setmelanotide was associated with reductions in BMI and BMI Z-score over ~1 year at therapeutic dose.

Participants aged ≥19 years (n=4)
- Mean change from baseline: -9.3 kg/m²
- Mean % change from baseline: -22.3% (P=0.056)

Participants aged <19 years (n=6)
- Mean change from baseline: -1.6
- Mean % change from baseline: -49.2% (P=0.007)

BMI, body mass index. Error bars are the standard error of the mean, which was calculated by dividing the standard deviation by the square root of N.
### Effect of Setmelanotide on BMI and BMI Z-Score

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Baseline</th>
<th>~1 year at therapeutic dose</th>
<th>Percent change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants aged ≥19 years, mean (SD) BMI, kg/m² (n=4)</td>
<td>43.90 (8.91)</td>
<td>34.58 (12.42)</td>
<td>-22.33 (14.75) P=0.056</td>
</tr>
<tr>
<td>Participants aged &lt;19 years, mean (SD) BMI Z-score (n=6)</td>
<td>3.35 (0.61)</td>
<td>1.73 (1.04)</td>
<td>-49.18 (27.20) P=0.007</td>
</tr>
</tbody>
</table>

Setmelanotide was associated with reductions in BMI and significant reductions in BMI Z-scores.
**Effect of Setmelanotide on Vital Signs**

<table>
<thead>
<tr>
<th>Parameter (N=10)</th>
<th>Baseline</th>
<th>~1 year at therapeutic dose</th>
<th>Percent change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD) diastolic blood pressure, mm Hg</td>
<td>73.13 (10.75)</td>
<td>71.50 (9.17)</td>
<td>-1.81 (6.27) P=0.384</td>
</tr>
<tr>
<td>Mean (SD) systolic blood pressure, mm Hg</td>
<td>111.57 (7.78)</td>
<td>109.83 (6.12)</td>
<td>-1.355 (5.11) P=0.423</td>
</tr>
<tr>
<td>Mean (SD) heart rate, beats/min</td>
<td>81.03 (12.08)</td>
<td>75.37 (7.25)</td>
<td>-5.85 (11.44) P=0.140</td>
</tr>
</tbody>
</table>

*Setmelanotide was not associated with changes in blood pressure or heart rate*
Setmelanotide Was Well Tolerated in Individuals With POMC or PCSK1 Deficiency Obesity

- There were no reported cardiovascular AEs related to setmelanotide
- There were no AEs or serious AEs that led to treatment discontinuation or death
- Setmelanotide was not associated with significant changes to blood pressure or heart rate
  - Diastolic blood pressure: 73.13 (baseline) to 71.50 (~1 year) mm Hg
  - Systolic blood pressure: 111.57 (baseline) to 109.83 (~1 year) mm Hg
  - Heart rate: 81.03 (baseline) to 75.37 (~1 year) beats/min

<table>
<thead>
<tr>
<th>Parameter</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment-related AEs</td>
<td>10 (100)</td>
</tr>
<tr>
<td>Injection-site reaction</td>
<td>10 (100)</td>
</tr>
<tr>
<td>Diffuse hyperpigmentation of the skin</td>
<td>10 (100)</td>
</tr>
<tr>
<td>Nausea/vomiting</td>
<td>7 (70)</td>
</tr>
<tr>
<td>Serious AEs&lt;sup&gt;a&lt;/sup&gt;</td>
<td>4 (40)</td>
</tr>
<tr>
<td>Serious treatment-related AEs</td>
<td>0</td>
</tr>
<tr>
<td>Treatment-related AEs leading to</td>
<td>0</td>
</tr>
<tr>
<td>discontinuation</td>
<td></td>
</tr>
<tr>
<td>AEs leading to death</td>
<td>0</td>
</tr>
</tbody>
</table>

<sup>a</sup>Five serious AEs occurred in 4 participants, including depression, major depression, acute adrenocortical insufficiency, pneumonia, and pleurisy.

AE, adverse event; PCSK1, proprotein convertase subtilisin/kexin type 1; POMC, proopiomelanocortin.
• In this phase 3 study, 80% of participants achieved the primary endpoint of ≥10% weight loss from baseline at ~1 year from therapeutic dose.

• Setmelanotide was associated with clinically meaningful weight loss and reduction in “most hunger” score.

• Mean change in body weight was -25.4% and mean weight loss was 31.9 kg.

• Withdrawal from setmelanotide during the 4-week placebo phase was associated with increases in weight and “most hunger” score.

• Setmelanotide was generally well tolerated, and there were no AEs or serious AEs associated with setmelanotide that led to treatment discontinuation.

Conclusion
Setmelanotide reduced hunger and body weight and was well tolerated in individuals with POMC or PCSK1 deficiency obesity.
Future Directions

- This study is one of two phase 3 trials supporting the potential use of setmelanotide for the treatment of early-onset severe obesity and hyperphagia
- The second phase 3 trial supports the potential use of setmelanotide in individuals with LEPR deficiency obesity
- The results from this study support further evaluation of setmelanotide in other disorders resulting from variants in the central melanocortin pathway, causing impaired MC4R activation