## **Rhythm Pharmaceuticals**

Targeting MC4R pathway and transforming the care of patients with rare genetic diseases of obesity

August 2021



© Rhythm<sup>®</sup> Pharmaceuticals, Inc. All rights reserved.

#### Forward Looking Statements

This presentation contains certain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, and that involve risks and uncertainties, including without limitation statements regarding the potential, safety, efficacy, and regulatory and clinical progress of setmelanotide, including the anticipated timing for initiation of clinical trials and release of clinical trial data and our expectations surrounding potential regulatory submissions, approvals and timing thereof, our business strategy and plans, including regarding commercialization of setmelanotide, the application of genetic testing and related growth potential, expectations surrounding the potential market opportunity for our product candidates, the sufficiency of our cash, cash equivalents and short-term investments to fund our operations, and strategy, prospects and plans, including regarding the commercialization of setmelanotide. Statements using words such as "expect", "anticipate", "believe", "may" and similar terms are also forward-looking statements. Such statements are subject to numerous risks and uncertainties, including but not limited to, our ability to enroll patients in clinical trials, the outcome of clinical trials, the impact of competition, the ability to achieve or obtain necessary regulatory approvals, risks associated with data analysis and reporting, our liquidity and expenses, the impact of the COVID-19 pandemic on our business and operations, including our preclinical studies, clinical trials and commercialization prospects, and general economic conditions, and other risks as may be detailed from time to time in our Annual Reports on Form 10-K and Quarterly Reports on Form 10-Q and other reports we file with the Securities and Exchange Commission. Except as required by law, we undertake no obligations to make any revisions to the forward-looking statements contained in this presentation or to update them to reflect events or circumstances occurring after the date of this presentation, whether as a result of new information, future developments or otherwise.



### Transforming Care of Patients with Rare Genetic Diseases of Obesity

INCIVERE®FDA-approved in November 2020(setmelanotide) injectionEC marketing authorization received July 2021



**Commercial availability** in U.S. meeting expectations and market access advancing in key **international markets** 

| Poised<br>to deliver on<br><b>Bardet-Biedl</b> in |  |
|---------------------------------------------------|--|
| the near-term                                     |  |





## Early-onset, Severe Obesity and Hyperphagia that Characterize Rare Genetic Diseases of Obesity

| 3 YEARS                            |                                  | <b>11</b> YI                                                                              | EARS, 231 POUNDS 2                           | 3 years, 450 pounds                    |
|------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|
|                                    |                                  |                                                                                           |                                              |                                        |
| •<br>NFANCY:                       | 4 YEARS:                         | CHILDHOOD:                                                                                | ADOLESCENCE:                                 | 23 years (current):                    |
| las "normal" weight at birth       | Diagnosed with POMC              | Self-isolation and missed school                                                          | Prescribed anti-depressants                  | Sleep apnea                            |
| Begins to rapidly gain weight at 9 | heterozygous deficiency obesity  | days                                                                                      | Numbness and agonizing back                  | Some cardiac issues                    |
| veeks                              |                                  | Asthmatic                                                                                 | pain                                         | Insulin resistance                     |
|                                    |                                  | Increased pain and pressure on<br>her knees make play and<br>physical education difficult | Abnormal pubertal developme                  | nt Cracked and bleeding skin           |
| Lost in the<br>system              | Little knowledge<br>or awareness | No tools, testing<br>or treatment                                                         | <u>Worst case:</u> An in<br>fault. Eat less, | rritation. It's your<br>exercise more. |



### Rare Genetic Diseases of Obesity are Distinct from General Obesity

Genetic variants impair MC4R pathway, disrupting satiety signaling, caloric intake and energy expenditure



- Early-onset, severe obesity
- Hyperphagia: a pathological hunger associated with persistent and potentially extreme food-seeking behavior
- Genetically defined patient population
- Resistant or refractory to therapies and interventions, including bariatric surgery
- Multiple complications and co-morbidities associated with obesity



### Rare Genetic Diseases of Obesity Associated with the MC4R Pathway Represent a Significant Market Opportunity

Estimated patients who may benefit from setmelanotide based on sequencing results and current estimated responder rates



\* 1.7% of the US population (328M; 2019 US census) presents with severe early onset obesity (Hales et al 2018); ~95% of individuals with severe early onset obesity remain obese into adulthood (Ward et al 2017); \*\* Estimated prevalence of U.S. patients based on company estimates; £ Regulatory submission for BBS remain on track, but path forward for Alström syndrome is pending final analysis of full data from phase 3 trial; € Planned trial would include patients with variants classified as pathogenic, likely pathogenic or of uncertain significance, and patients with N221D variant; †Estimated prevalence of U.S. patients with addressable variants of the MC4R.



### MC4R Pathway Biology is Clear and Strong: Regulates Hunger, Caloric Intake, and Energy Expenditure, and, Consequently, Body Weight

Setmelanotide can redress MC4R pathway impairment contributing to early-onset, severe obesity





### Executing on Gene-by-gene Strategy to Expand Reach of Setmelanotide

| Genes<br>Approved | Genes for<br>Regulatory Submission | Genes in<br>Develoj                               | Genes in Clinical<br>Development |  |
|-------------------|------------------------------------|---------------------------------------------------|----------------------------------|--|
|                   |                                    | Phase 2                                           | Phase 3                          |  |
| POMC              | POMC BBS (all)                     | 21                                                | POMC                             |  |
| PCSK1             | ALMS1                              | 51                                                | PCSK1                            |  |
| LEPR              |                                    | additional<br>genes related<br>to MC4R<br>pathway | LEPR                             |  |
| (biallelic)       |                                    |                                                   | SRC1                             |  |
|                   |                                    |                                                   | SH2B1                            |  |
|                   |                                    | (heterozygou<br>allele va                         | us or single<br>riants)          |  |

#### Setmelanotide lifecycle advancements

Pediatrics patients (2-6 years old) and weekly formulation



## Synergistic Strategy Drives Patient Finding for Clinical Trials and Commercialization





## Rhythm Leadership – Strong Team with Broad Biopharma Experience

| <b>David Meeker, MD</b><br>Chair, President and<br>Chief Executive Officer                                          | Hunter Smith<br>Chief Financial Officer                                                   | Yann Mazabraud<br>Executive Vice President,<br>Head of International | <b>Jennifer Chien</b><br>Executive Vice President,<br>Head of North America     | Murray Stewart, MD<br>Chief Medical Officer           |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|
| SANOFI GENZYME                                                                                                      | Celgene                                                                                   | SANOFI GENZYME<br>trevi therapeutics                                 |                                                                                 | novelion<br>HERAPEUTICS                               |
| 25-plus years; focus on rare<br>genetic disease treatments,<br>including Aldurazyme®,<br>Fabrazyme® and<br>Myozyme® | Financial leadership for<br>Otezla®; 20-plus years<br>in finance, M&A,<br>capital markets | 20 years leading global<br>commercial strategy in<br>rare diseases   | More than 20 years<br>leading global<br>commercial strategy in<br>rare diseases | 20-plus marketed<br>products and NDAs<br>10-plus INDs |



IMCIVREE<sup>®</sup> (setmelanotide) Commercially available in the United States; Received EC authorization in July 2021



U.S. and EU Approvals of IMCIVREE Based on Phase 3 Data from Largest Studies Conducted in Obesity due to POMC, PCSK1 or LEPR Deficiency

#### POMC/PCSK1



#### Supplemental patients:

 100% of POMC (4) and LEPR (4) supplemental patients achieved >10% weight loss\*

#### Long-term extension study:

12 of 15 eligible POMC patients enrolled \*

LEPR

12 of 15 eligible LEPR patients enrolled \*

BL, baseline; PCSK1, proprotein convertase subtilisin/kexin type 1; POMC, proopiomelanocortin; FV, final visit; V, visit. <sup>+</sup>N=9 POMC participants and N=7 LEPR participants who achieved weight loss threshold (5 kg or 5% if <100 kg) after the first open-label active treatment phase. **Reference:** IMCIVREE Prescribing Information; \* Data as of Nov. 16, 2020 cutoff as presented Dec. 22, 2020, corporate conference call.



### IMCIVREE U.S. Commercial Availability Strategy Meeting Expectations





Market Access and Reimbursement in Key International Markets on Track with First Commercial Sales expected in 1H 2022





# Bardet-Biedl and Alström Syndrome U.S. and EU regulatory filings planned for 3Q/4Q 2021



## Bardet-Biedl and Alström Syndromes Associated with Severe Obesity and Hunger





#### Alström syndrome<sup>2,3</sup> Rare ciliopathy disorder associated with ALMS1 mutation

#### *"Critical to treat obesity, absolutely critical!"* – PCP<sup>4</sup>

**References: 1.** Forsythe E, Beales PL. Bardet-Biedl Syndrome. 2003 Jul 14 [Updated 2015 Apr 23]. In: Adam MP et al, eds. GeneReviews<sup>®</sup> [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. https://www.ncbi.nlm.nih.gov/books/NBK1363/. **2.** Marshall JD et al. *Curr Genomics*. 2011;12(3):225-235. **3.** Marshall JD et al. Alström Syndrome. 2003 Feb 7 [Updated 2012 May 31]. In: Adam MP et al, eds. GeneReviews<sup>®</sup> [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. https://www.ncbi.nlm.nih.gov/books/NBK1267/. **4.** From market reserach interviews.



### Pivotal Phase 3 Data Supportive of Registration

Setmelanotide achieved statistical significance and delivered clinically meaningful weight loss and hunger reduction

## Phase 3 Topline Data (n=31<sup>a</sup>)

34.5%<sup>b</sup> -6.2% -30.8% 60.2% **p=0.0024** p<0.0001 p<0.0001 p<0.0001 ≥10% weight ≥25% reduction mean weight mean hunger reduction in worst hunger loss score reduction

As presented on Dec. 22, 2020, reflecting data cut-off of Dec 2. 2020. <sup>a</sup>Study participants older than 12 counted in full analysis set for primary and key secondary endpoints; Five participants were younger than 12, and two participants older than 12 discontinued during placebo-controlled period prior active therapy. <sup>b</sup>Response rate estimated based on imputation methodology discussed with FDA.



## Vast Majority of BBS Patients<sup>\*</sup> had Clinically Meaningful Response to Setmelanotide



\*A total of 28 patients were older than 12 years old and included in the primary analysts set, 15 adults and 13 patients between the ages of 12 and 18; \*\* One patient was younger than 12 at enrollment and therefore not evaluable in for the primary endpoint; As presented on Dec. 22, 2020, corporate conference call, reflecting data cut-off of Dec 2. 2020, and as presented at The Endocrine Society Annual Meeting in March 2021.



#### Statistically Significant Body Weight Reduction Achieved in Adolescent and Adults Patients with BBS at Week 52



<sup>a</sup>Baseline, n=16 and Week 52, n=14. <sup>b</sup>Data shown by study visit do not include data imputed for participants who received <52 weeks of setmelanotide at the time of the primary analysis. BBS, Bardet-Biedl syndrome; BL, baseline; BMI, body mass index; SD, standard deviation. As presented at the annual meeting of the Pediatric Endocrine Society on April 30, 2021.



## Field Force Now Engaging Established BBS Patient Community





- Engagement of current BBS treaters and diagnosers
- Disease education of HCPs to support appropriate evaluation and testing



## Clinical Development: Meaningful Expansion of Addressable Patient Population



## Rhythm Pipeline Designed to Achieve Label Expansion

|                |                                         | Phase 2                                                                                      | Phase 3          | Regulatory<br>Submission | Approved |
|----------------|-----------------------------------------|----------------------------------------------------------------------------------------------|------------------|--------------------------|----------|
|                | IMCI VREE™<br>(setmelanotide) injection | FDA approval and EC marketing authorization for POMC                                         | , PCSK1 AND LEPF | R deficiency             |          |
|                | Bardet-Biedl and<br>Alström syndromes   | sNDA and Type II MAA amendment on track for submiss                                          | ion              |                          |          |
| tide           | EMANATE Trial                           | Five independent, genetically-defined sub-studies                                            |                  |                          |          |
| lano<br>laily) | Pediatrics Trial                        | Open-label children 2- to 6-years old                                                        |                  |                          |          |
| etme<br>(d     | Exploratory Basket Study                | Ongoing study MC4R rescuable                                                                 |                  |                          |          |
| Se             | Hypothalamic Obesity                    | Exploratory, open-label                                                                      |                  |                          |          |
|                | DAYBREAK Trial                          | 31 additional genes                                                                          |                  |                          |          |
| Weekly         | Switch                                  | Double-blind in patients with BBS, biallelic or heterozygous POM<br>PCSK1 or LEPR deficiency | 2,               |                          |          |
| formulation    | De novo                                 | Double-blind, placebo-controlled in patients with BBS                                        |                  |                          |          |



## Parallel Operations to Support both EMANATE and DAYBREAK

#### **IQVIA** engaged as contract research organization

#### Site initiations set to begin in 3Q 2021

- All sites to service both trials
- 75+ sites in 14 countries in North America, Europe and the Middle East

#### **Enrollment over 12 to 18 months**

- First patient in for both trials expected in Q4 2021
- EMANATE 52 weeks to execute treatment period
  - Individual sub-studies may readout and potentially be registered independently
- DAYBREAK 40 weeks to execute treatment periods
  - Individual genes may readout independently

#### Uncovering Rare Obesity sponsored genetic test drives enrollment for clinical trials





## Improved URO with Expanded Gene Panel Launched in July 2021



New HCP *website* to consolidate all information and operations



#### Data generated from URO as of June 2021



**47.2 kg/m<sup>2</sup>** Average BMI from adults



## URO Geo-targeting and Referral Network Strategy to Drive Clinical Trial Enrollment



50 miles radius around target DAYBREAK and EMANATE trial sites

HCP URO tester (circle size reflects number of tests)

## ~650 patients

identified through who are eligible for enrollment in EMANATE or DAYBREAK trials and live within 50 miles of a clinical trial site



EMANATE Phase 3 Master Protocol Includes 5 Independent Sub-studies

110 patients per sub-study, 55 per arm (therapy and placebo)



Design allows for independent success in each sub-study



\* Heterozygous; \*\* VUS= variant of uncertain significance

DAYBREAK Trial: Phase 2, Two-stage, Double-blind, Placebo-controlled Study to Evaluate Setmelanotide in 31 MC4R Pathway Genes





## Phase 3 Trial in Pediatric Patients Ages 2 to 6 years old to Initiate 2H 2021

#### International one-year, open-label study

#### **Enrollment:** 10 patients

- 5 with biallelic POMC, PCSK1 or LEPR deficiency
- 5 with BBS

**Primary endpoint:** Responder analysis based on proportion of patients who experience a decrease in BMI-Z of  $\geq 0.2$ 

Secondary endpoints: Safety and tolerability

Rare genetic diseases of obesity often present early in life



#### Phase 3 Trials Evaluating Weekly Formulation of Setmelanotide to Initiate 2H 2021

#### Phase 3 randomized, double-blind switch study

- Enrollment: 30 patients with BBS or biallelic or heterozygous POMC, PCSK1 or LEPR deficiency who have who have been on open-label QD setmelanotide treatment for at least 6 months
- Randomized 1:1 for 13 weeks of double-blind randomization QD vs QW, crossover to 13 weeks open-label QW
- Primary endpoint: responder analysis, based on the proportion of patients with no weight gain of 5 percent or greater from baseline to week 13

Phase 3 de novo randomized, double-blind, placebo-controlled trial of once weekly formulation of setmelanotide

- Enrollment: 40 setmelanotide naïve patient with BBS (~60% adults)
- 18 weeks of double-blind administration of QW vs placebo, followed by 14 weeks of open-label QW administration of setmelanotide
- Primary endpoint: Mean change in weight compared to placebo

#### Weekly formulation of setmelanotide designed to improve compliance and adherence



### Setmelanotide Generally Well-tolerated Across Development Program

Setmelanotide has been evaluated in 639 patients with obesity, with some individual patient treatment duration now exceeding five years

## Setmelanotide has been generally well-tolerated Most AEs are mild:

- Mild injection site reactions
- Hyperpigmentation and skin lesions, mediated by the closely related MC1 receptor
- Nausea/vomiting: mild and early in treatment

Discontinuations are rare; no increase in CV parameters:

 In POMC and LEPR pivotal trials, setmelanotide was not associated with significant changes to blood pressure or heart rate

#### Patient experience with setmelanotide\*

| Duration on therapy | # of patients |
|---------------------|---------------|
| < 1 year            | 545           |
| > 1 year            | 94            |
| > 2 years           | 40            |
| > 3 years           | 17            |
| > 4 years           | 3             |
| > 5 years           | 2             |

\* Data as of March 8, 2021, inclusive of trial participants who received daily or weekly formulation of setmelanotide.



### Transformational Progress Expected in 2021

#### 1H 2021

- ✓ Proof-of-concept data in HET patients, SRC1 and SH2B1 deficiency obesities
- Update on genetic sequencing and epidemiology data
- ✓ IMCIVREE commercially available in U.S. for POMC, PCSK1 and LEPR deficiency obesities
- ✓ Initiate Phase 2 trial in hypothalamic obesity

#### 2H 2021

EU decision on POMC, PCSK1 and LEPR MAA

Present full data analyses from pivotal Phase 3 trial in BBS at ESPE 2021

U.S. and EU regulatory submissions for BBS and AS

Initiate Phase 3 trial in pediatric patients aged 2-6 years old

Initiate Phase 3 EMANATE trial

Initiate Phase 2 DAYBREAK trial

Initiate two Phase 3 trials for weekly formulation

#### 1H 2022

Initial data from Phase 2 Basket study in MC4R-rescuable patients

Initial data from Phase 2 trial in hypothalamic obesity



## Cash Expected to be Sufficient to Fund Operations into 2H 2023

| SHARES OUTSTANDING<br>as of 6/30/2021                                                        | 50,209,484 (basic and diluted share count) |
|----------------------------------------------------------------------------------------------|--------------------------------------------|
|                                                                                              |                                            |
| AUDITED ESTIMATED CASH, CASH<br>EQUIVALENTS AND SHORT-TERM<br>INVESTMENTS<br>as of 6/30/2021 | \$368.2 million                            |



## Appendix



## Phase 2 Basket Study Evaluated Response at Three Months of Therapy



#### Primary endpoint is the proportion of patients who achieve >5% weight loss at 12 to 16 weeks on therapy.



<sup>a</sup>Final visit at week 20 for patients not enrolling in a separate extension study.

#### Clinical Characteristics of Patients Enrolled in Exploratory Phase 2 Basket Study

|          | <b>HETS</b>                      | SRC1 deficiency       | SH2B1 deficiency      |
|----------|----------------------------------|-----------------------|-----------------------|
|          | Heterozygous POMC, PCSK1 or LEPR | obesity               | obesity               |
|          | N= <b>35</b>                     | N= <b>13</b> *        | N= <b>17</b> *        |
| Mean age | <b>39 years old</b>              | <b>32 years old</b>   | <b>30 years old</b>   |
| (range)  | (15 - 68)                        | (12 - 66)             | (12 - 60)             |
| Mean     | 316 lbs/                         | 258 lbs/              | 272 lbs/              |
| weight   | 143 kgs                          | 117 kgs               | 123 kgs               |
| Mean BMI | 50 kg/m <sup>2</sup>             | 44 kg/m <sup>2</sup>  | 44 kg/m <sup>2</sup>  |
|          | 5 patients had failed            | 3 patients had failed | 4 patients had failed |
|          | bariatric surgery                | bariatric surgery     | bariatric surgery     |

\* Completers Set excludes 15 patients who withdrew early due to COVID-related issues, AEs, or lost to follow-up; and 12 ongoing patients who had not reached 12 weeks of therapy. A majority of patients who withdrew early experienced weight loss.



Response Rate and Weight Loss at Month 3 (Overall) POMC/PCSK1/LEPR Heterozygous Deficiency Obesity

> 34.3% of patients (12/35) achieved the primary endpoint of ≥5% weight loss from baseline at Month 3\*

|                        | Baseline        | Month 3         | Percent change from<br>baseline |
|------------------------|-----------------|-----------------|---------------------------------|
| Mean (SD) body weight: | <b>144.7 kg</b> | <b>130.7 kg</b> | <b>-10.1%</b> (4.4)             |
| Responders (n=12)      | (32.6)          | (33.5)          |                                 |

\* Data include six patients who withdrew early, last observed value carried forward, as of Dec. 17, 2020.



## Clear Separation of Responder, Non-responder Groups Supportive of Pathway Deficit in HETs



## Change in Most Hunger Score at Month 3 and Over Time *POMC/PCSK1/LEPR Heterozygous Deficiency Obesity*



Data as of Dec. 17, 2020; Responder is defined by Month 3 weight loss; CI, confidence interval; Error bars represent the 90% CI.



### Responses to Setmelanotide Were Maintained Through 6 and 9 Months



A responder was defined as having ≥5% weight loss from baseline at Month 3. Data as of December 17, 2020, for month 3 and as of February 23, 2021, for months 6 and 9; error bars are the 90% CI. CI, confidence interval.



ACMG Variant Classification Can Inform MC4R Pathway Deficit and Potentially Setmelanotide Response





\*ACMG Guidelines Richards et al, 2015

## Weight Loss at Month 3 by ACMG Subgroup in HETs

#### Pathogenic

Benign

| Likely        |                                                | Responders,<br>n (%)ª | Non-responders,<br>n (%) |
|---------------|------------------------------------------------|-----------------------|--------------------------|
| Fattiogenic   | Pathogenic/likely<br>pathogenic (n=8)          | 4 (50.0)              | 4 (50.0)                 |
| VOUS          | Variant of<br>uncertain<br>significance (n=19) | 4 (21.1)              | 15 (78.9)                |
| Likely Benign | N221D (n=8)                                    | 4 (50.0)              | 4 (50.0)                 |

Data as of Dec. 17, 2020; CI, confidence interval; ACMG, American College of Medical Genetics. <sup>a</sup>Achieved the threshold of ≥5% weight loss from baseline at Month 3.



Response Rate and Weight Loss at Month 3 (Overall) SRC1 Deficiency Obesity – Completers Set

**30.8%** of patients (4/13) achieved the primary endpoint of ≥5% weight loss from baseline at Month 3

|                        | Baseline | Month 3  | Percent change from<br>baseline |
|------------------------|----------|----------|---------------------------------|
| Mean (SD) body weight: | 116.6 kg | 106.4 kg | -8.4%                           |
| Responders (n=4)       | (29.1)   | (24.6)   | (2.5)                           |



Interim data as of Dec. 17, 2020.

## Clear Separation of Responder, Non-responder Groups Supportive of Pathway Deficit in SRC1 – *Completers Set*





Response Rate and Weight Loss at Month 3 (Overall) SH2B1 Deficiency Obesity – Completers Set

**52.9%** of patients (9/17) achieved the primary endpoint of ≥5% weight loss from baseline at Month 3

|                        | Baseline        | Month 3         | Percent change from<br>baseline |
|------------------------|-----------------|-----------------|---------------------------------|
| Mean (SD) body weight: | <b>123.6 kg</b> | <b>114.8 kg</b> | <b>- 7.1%</b> (2.1)             |
| Responders (n=9)       | (28.1)          | (26.4)          |                                 |



Interim data as of Dec. 17, 2020.

## Clear Separation of Responder, Non-responder Groups Supportive of Pathway Deficit in SH2B1 – Completers Set





New Paradigm: Targeted, Three-step Approach to Identifying and Treating Patients with Rare Genetic Diseases of Obesity

#### Phenotype

- Early-onset, severe obesity
- Adults: BMI>40
- Children: <18 yrs weight >97th percentile

#### Genotype

 Test positive for genetic variant in the MC4R pathway

#### Setmelanotide response

- 5% weight loss in adults in 12-16 weeks
- BMI-Z scores in children



### EMANATE Endpoints to Illustrate Effect on Weight and Hunger

#### **Secondary endpoints**

- Proportion of patients who achieve at least 5% reduction in BMI at 52 weeks compared to placebo
- Proportion of patients who achieve at least 10% reduction in BMI at 52 weeks compared to placebo
- Difference in mean change in body weight at 52 weeks in adult patients (age ≥18 years at baseline) compared to placebo, assessed as percent change body weight
- Mean percent change in the weekly average most hunger score at 52 weeks compared to placebo
- Mean body weight loss, and % body weight loss in responders with ≥5% body weight loss (if >18 years of age), and a decrease in % BMI by 3% (if <18 years of age) after 12 weeks compared to placebo responders
- Mean change in symptoms of hyperphagia and mean change in impacts of hyperphagia at 52 weeks compared to placebo



### DAYBREAK Phase 2 Trial Design and Endpoints Enable Rapid Path to Proof of Concept based on Individual Genes

Primary endpoint is the proportion of patients by gene who enter Stage 2 who are responders compared to placebo

- Responders >18 achieve 10% or greater body weight reduction from baseline
- Responders <18 achieve BMI reduction of > 0.3 from baseline

#### Secondary endpoints by gene

- Proportion of patients who meet 5% weight loss criteria to enter Stage 2 compared to historic rate of 5%
- Mean change and percent change in body weight in patients >18 compared to placebo
- Mean BMI-Z change in patients <18 compared to placebo
- Mean change in waist circumference in patients >12 compared to placebo
- Mean % change in weekly average hunger
- Overall safety and tolerability

**Other secondaries:** physical functioning scores and quality of life measures vs placebo



